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A second-order piecewise-linear dynamic system with jumps in the representative 
point on the juncture lines is investigated on a cylindrical phase space. 

We consider the equation 

F ((p + 2kn) z F (cp) (k = (“, + 1,. . .), 
1-1 for 

F (q) = , 
--n<cp<O 

1 for 
O<cp<n 

This equation describes the dynamics of a phase automatic frequency control (aft) sys- 
tern with an integrating filter [1, 21 and a rectangular phase detector characteristic [3] 
with an approximate accounting for the lag Cl]. It has no meaning for values of q at 

which F (cp) suffers discontinuities. By intIoducing new variables and notation 

we replace the equation in the strips -n < cp < 0 and 0 < cp < n by the systems 

‘p’ = Y, I/’ = ci-‘n - y (--<<<w (I) 

qp’ = II7 ?/’ = - p-‘n - Y (0 < cp < TI) (2) 

Here the dots denote differentiation with respect to t0 ; a cylinder serves as the phase 
space of the system. Systems (1) and (2) permit us to trace the motion of the represent- 
ative point upto the instant when it hits onto one of the straight lines q = 0 or cp = n. 
The subsequent motion of the representative point requires an extension of the definit- 
ion. We should indicate how much time it spends on the straight line, how it moves 
along it, at which point it leaves, and which of systems (1) or (2) describes its subsequ- 
ent motion. We make use of the extended definition given in [4]. (When applying the 
formula (*) in [4] it is necessary to take into account the scales of t and y). 

l ) In [4] (English Version), page 756, line four from the top the erroneous equation r = 
2b, h 2 6 , as given in the Russian Original Edition, should read r = 2bh > 0. 
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The scheme for the extended motions on the straight line cp = n is shown in Fig. 1, a. 

a b 

Fig. 1. 

Here, for the sake of vizualization the mutually-overla- 
pping trajectories on the cp -axis have been moved apart. 
The representative point, having hit upon the point (z, YJ 

where Y > 2b, makes a jump of size kb downward along 
the straight line q = n, after which the motion continues 

for cp = fl in accordance with system (1). If b (1 - v) < 

y < 26, the representative point skips into the point (n, U) 
and is located at it for the time 

bh’ln{b (1 + y) / [Y - b (1 - v)lI 

after which the motion continues for cp > n in accordance 

with system (1). If y = b (1 - y), the representative 

point skips into the point (n, 0) and remains there for an 
unboundedly long time. If 0 < y < b (1 - y), the repre- 
sentative point skips into the point (n, 0) and is located 
at it for the time 

bh%b (1 - y) / b (1 - yi-- 5 

after which the motion continues for rp < n in accordance 
with system (2). The behavior of the representative point moving in the lower half-cyl- 
inder and hitting onto the straight line cp = rc is analogous (we need only replace y by 

-Y and y by --y). 

The point (n, 0) is an equilibrium point analogous to a saddle, while the trajectories 

passing through the points [n, b (1 - y)] and [n,-- b (i + y)], are its separatrices. The 
role of the other two separatrices is played by the trajectories issuing from the point (n,O). 

The scheme for the extended motions along the straight line cp = 0 is shown in Fig. 
1. b. The representative point, having hit onto the point (0, y), where y > 0, makes a 
jump of size 26 upward along the straight line q = 0, after which motion continues for 
‘P > 0 in accordance with system (2). If y < 0, the representative point makes a jump 

of size 26 downward along the straight line q = 0, after which motion continues for 
‘p < 0 in accordance with system (1). The point (0, 0) is an equilibrium state analogous 

to an unstable node. From it issue trajectories passing through the point (0, I& where 
0 < y < 26 or -2b 6 y < 0. (The representative traverses the vertical part of such 
a trajectory from the point (0, 0) to the point (0, y) by a jump). When the system has 
been completely defined on the straight lines cp= 0 and ‘p = n, we can trace any par- 

ticular solution of it on any interval of time and investigate it qualitatively. Not doing 

this here (it is similar to the investigation in [5]), we limit ourselves to a presentation 
of the results. 

Figure 2 shows the schematic partitioning of the space of parameters a, p, k = bha 

of the system being investigated into regions of different qualitative structure of the 

phase trajectories (in the section /3 = const)of the plane). This partitioning is effected 
by the heavy lines in Fig. 2. The corresponding structures are presented in Fig. 3. For 
simplicity on Fig. 3 we have taken a nonuniform scale on the cp -axis, and both the 
equilibrium states are shown on the front half of the cylinder; on a uniform scale one 
of them would be on the back half. In region 1 the system has a stable limit cycle surr- 
ounding the equilibrium state (0, 0) (shrinking to this equilibrium state uniformly as 
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k 4 0). The thin lines partition region 1 into subregions distinguishing the nature of 

l7 

Fig. 2. 

la 

2b 

lb 

Fig. J. 

the limit cycle. In subregion 1,a the cycle has two 
vertical segments on the straight line 9 = 0, which 
the representative point traverses by a jump. In sub - 
region 1, b the cycle has a further vertical segment 

on the upper part of the straight line cp= z. The rep- 

resentative traverses it also by a jump, but before mo- 
tion continues on the lower part of the cycle, it dwells 
for some time at the point (n, 0). In subregion 1. c 

the same kind of vertical segment of the cycle occurs 
also on the lower part of the straight line ‘p = --n. 

When passing from region 1 to region 2, a stable 
limit cycle girding the upper half-cylinder is born from 
the loop formed by the separatrix of the equilibrium 

state (A, 0). Figure 4, a shows (on 

a developed cylinder) the instant 
of birth of the cycle, and Fig. 4. 
b shows the cycle. On the straight 
lines ‘p = 0 and cp = 3t it has ver- 
tical segments which the represen- 
tative point traverses by a jump. 
After the jump along the straight 
line ‘p = JC the representative 

point makes a stop at the point 
(JC, 0) before motion continues. 

Thus, in region 2 we have a sta- 
ble limit cycle girding the tipper 

half-cylinder and a stable cycle 
surrounding the equilibrium state 
(0, 0). The latter cycle can be of 

two types. In subregion 2, a it is 
just as in 1, a; in subregion 2, b 
it is just as in 1, b. 

When passing from region 2 to 
region 3 this cycle becomes a loop 
formed by the separatrix of the 
equilibrium state (n, 0). In region 
3 the system has only one cycle, 

girding the upper half-cylinder. When passing from region 1 into region 3 through the 
boundary 1, c - 3 the cycle surrounding the equilibrium state (0, 0) becomes a loop 

formed by the separatrix of the equilibrium state (x, 0) . Simultaneously, a stable limit 
cycle girding the upper half-cylinder is born from the part of this loop lying in the 
upper half-cylinder. 

When passing from region 3 into region 4 a stable limit cycle girding the lower half- 
cylinder is born from the loop formed by the separatrix of the equilibrium state (JI, 0). 
Thus, in region 4 the system has two stable limit cycles: one in the upper and another 
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in the lower half-cylinder. The 
region of existence of a limit cycle 
girding the upper half-cylinder (the 

aggregate of regions 2, 3, 4) can 
be divided into two parts distinguish- 
ing the hature of the cycle. In the 

part abutting the boundary 1 - 2, 

1 - 3 it has the nature described 

above and is shown in Fig, 4, b. 
When passing to the other part (the 

transition instant is shown in Fig. 4, 
c) the cycle “separates” from the 

‘p -axis (see Fig. 4, d). When mov- 
ing along this cycle the representa- 

tive point has no stops. The region 
of existence of a cycle girding the 

lower half-cylinder can be similarly 
divided into two parts, 

In conclusion we cite the equati- 

ons, of interest in practice, of the surfaces l- 2, 1 - 3 corresponding to the birth of a 
limit cycle in the upper half-cylinder 

a = e-’ + 7 - 1, p = (k + 1) (ee - 1) - 0, fi7 - a8 = 2afJ - Iif3 

Here T and 0 are subject to elimination. 
Note. This paper is closely related to the author’s papers [4, 51 and to those of 

other authors [6 - S] in which the given equation is considered under a number of assum- 
ptions on the sign of the coefficient b of the form of the discontinuous function p(q). By 
comparing the results in [4, 51 with those herein on the one hand, and with the results 

in [6 - 83 on the other, we can see the following: 1) the methods applied in [6 - 83 do 
not allow us to establish completely the nature of all the solutions of the equation, in 

particular, in some cases it is not possible to compute the transient responses ending at 
the equilibrium state; 2) the methods employed in fl, 81 can lead to improper conclusi- 
ons in some cases. Thus, if we apply them to the case investigated here, the cycle shown 
in Fig. 4, b is lost. and as the condition for the birth of the cycle we have to accept the 
condition for the conversion of a cycle of type 4, b into a cycle of type 4, d. 

The author’s thanks to N. N. Bautin for his advice and discussion. 
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